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Abstract:

We study topological as well as dynamical properties of BPS nonabelian magnetic

monopoles of Goddard-Nuyts-Olive-Weinberg type in G = SU(N), USp(2N) and

SO(N) gauge theories, spontaneously broken to nonabelian subgroups H . We find

that monopoles transform under the group dual to H in a tensor representation

of rank determined by the corresponding element in π1(H). When the system is

embedded in a N = 2 supersymmetric theory with an appropriate set of flavors with

appropriate bare masses, the BPS monopoles constructed semiclassically persist in

the full quantum theory. This result supports the identification of “dual quarks”

found at r-vacua of N = 2 theories with the nonabelian magnetic monopoles. We

present several consistency checks of our monopole spectra.
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1 Introduction

After many years of investigations [1]-[5] the dynamical roles that nonabelian

monopoles can play in physically interesting gauge theories are finally being under-

stood. Although their presence in classical examples of conformally invariant N = 4

theories and in more recent N = 1 supersymmetric models with Seiberg duals [12] is

by now well known, monopoles with nonabelian gauge symmetry manifest themselves

most clearly (e.g., as the infrared degrees of freedom) in softly broken N = 2 gauge

theories coupled to fundamental matter hypermultiplets [13]-[15].

In particular, a series of papers on this class of theories with gauge groups SU(N),

USp(2N) and SO(N) and various numbers of flavors of matter multiplets [16]-[18]

systematically investigated the infrared fate of these monopoles in every vacuum.

The “dual quarks” appearing as the low-energy degrees of freedom in certain vacua

of these theories, which are charged under the unbroken nonabelian SU(r) ⊂ G, can

be identified [19] with the semiclassical monopoles studied earlier by Goddard, Nuyts

and Olive [4] and also by E. Weinberg [6]. All of the confining vacua of strongly

coupled USp(2N) and SO(N) theories with flavors and without bare quark masses

involve these objects in a deformed SCFT [17, 18, 20].

Recently, with A. Yung, we have explored the properties of nonabelian BPS vor-

tices appearing in the same class of models [21]. In particular, continuous transfor-

mations among the degenerate vortex solutions (vortex zero modes) were explicitly

constructed, showing the true nonabelian nature of these solitons. The analysis is

done in a region of large bare quark masses where the semi-classical approximation

holds, and yet the whole result is quantum mechanically valid when the model is

embedded in the N = 2 theory [21]. 1

In the present paper, our attention will be focused on the topological and dynam-

ical properties of nonabelian monopoles themselves, in a wide class of N = 2 gauge

theories with SU(N), USp(2N) and SO(N) gauge groups, spontaneously broken

to various nonabelian subgroups H . In particular for each symmetry breaking pat-

tern the minimal monopoles are identified and their nonabelian and abelian charges

1There are papers related to ours by Hanany and Tong [22], and also by Kneipp[23]. Interesting

recent articles [24, 25] furthermore relate the vortex dynamics to that of 4D gauge theory itself.
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determined. The monopole-vortex flux matching argument given in [26] is crucial

in demonstrating, albeit indirectly, that a continuous set of these monopoles exist,

forming a multiplet of the dual gauge group, H̃.

This paper is organized as follows. We start our analysis (Section 2) by reviewing

the properties of BPS “nonabelian” monopole solutions in a bosonic theory with a

spontaneously broken SU(N + 1) → SU(N) × U(1) symmetry. We then show that

when the model is embedded in a N = 2 supersymmetric theory [13]-[15], the semi-

classical solutions of the bosonic model acquire a quantum mechanical meaning. The

quantum mechanical aspects of nonabelian monopoles and in particular the impor-

tance of the massless flavors in the underlying theory, are discussed more thoroughly

and in a more general context in Section 3. In Section 4 we establish their topological

stability and determine their abelian magnetic charges with respect to the minimal

Dirac quantum, based on homotopy group analysis, for G = SU(N), USp(2N) or

SO(N) and for various choices of H . In Section 5 we present an explicit construction

of these minimal monopoles. We summarize our results in Section 6, presenting also

some crosschecks of consistency of our results. In Appendix A, the general formulae

due to E. Weinberg and to Goddard-Nuyts-Olive are reviewed and somewhat stream-

lined, which helps as a reference for other parts of the paper. For completeness and

for convenience we review also the root vector systems and Cartan subalgebras of

SU , SO and USp Lie algebras in Appendix B.

2 Nonabelian BPS Monopoles in SU(N + 1) Theories

For illustration we begin our discussion by briefly reviewing the properties of the

monopoles arising in a system with symmetry breaking SU(N +1) → SU(N)×U(1).

2.1 Bosonic SU(N + 1) theory with an adjoint scalar

We are interested in the standard SU(N + 1) model

L =
1

4g2
(F A

µν)
2 +

1

g2
|(Dµφ)A|2 − V (φ), (2.1)
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with a complex adjoint scalar field φ. Let us assume that the potential is minimized

by an adjoint scalar VEV of the form

〈φ〉 =





v 0 . . . 0

0 v . . . 0
...

...
. . .

...

0 0 . . . −Nv




=

(
v · 1N×N

−Nv

)
. (2.2)

Such a VEV breaks the gauge symmetry as

SU(N + 1) → SU(N) × U(1)

ZN

= U(N), (2.3)

where the ZN factor arises because the nth roots of unity in U(1) also lie in SU(N).

The stability of a monopole is guaranteed by the topological nontriviality of both

its SU(N + 1)-valued adjoint scalar Higgs field and its gauge fields. The Higgs VEV,

evaluated on a 2-sphere surrounding any monopole, provides a map from the 2-sphere

to the space of orbits of the unbroken gauge group U(N) in the original SU(N + 1).

The Higgs VEV is therefore a representative of π2(SU(N + 1)/U(N)).

On the other hand, The gauge field configuration describes a U(N) gauge bundle

over the spacetime with the monopole deleted, which can be contracted to a 2-sphere.

Such a gauge bundle may be trivialized over the northern and southern hemispheres,

and so is entirely characterized by the transition function on the equator. The tran-

sition function is a map from the equatorial circle to the gauge group U(N), and so

it is a representative of π1(U(N)).

The long exact sequence for homotopy groups of fibrations assures that these two

classifications of monopoles agree. The two homotopy groups are both the group of

integers

π2

(
SU(N + 1)

U(N)

)
= π1(U(N)) = Z (2.4)

and so these monopoles are topologically stable and may carry any integral charge.

We will see later that if the original gauge symmetry G is not simply connected then

the long exact sequence yields more topologically distinct gauge field configurations

than Higgs configurations. These extra gauge field configurations are singular Dirac-

like monopoles that exist in the G gauge theory even without symmetry breaking,

and are not the nonsingular monopoles of interest in this paper. For semi-simple G

the fundamental group is torsion and so the extra monopole charges are pure torsion

and the extra monopoles are not BPS.
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The mass of a BPS monopole may be read from the Hamiltonian

H =

∫
d3x

[
1

4g2
(F A

ij )
2 +

1

g2
|Diφ

A|2
]

=

∫
d3x

[
1

4g2
(F A

ij )2 +
1

2g2
|Diφ

A|2
]

(2.5)

where in the final expression we have kept only the real part of φA. Rewriting the

Hamiltonian as

H =

∫
d3x

[
1

4g2

∣∣F A
ij ± ǫijk(Dkφ)A

∣∣2 ± 1

2
∂k(ǫijkF

A
ij φ

A)

]
(2.6)

BPS monopole [28] configurations are seen to satisfy the nonabelian Bogomolny

equations:

BA
k = −(Dkφ)A; BA

k =
1

2
ǫijkF

A
ij . (2.7)

The BPS bound on the monopole mass is given by the following integral, performed

on the 2-sphere at r = ∞:

H =

∫
dS · (φABA) =

2π

g
3 v k, k = 1, 2, . . . . (2.8)

More explicitly, a monopole solution can be found by choosing an SU(2) subgroup:

S1 =
1

2





0 0 . . . 1

0 0 . . . 0
...

...
. . .

...

1 0 . . . 0




; S2 =

1

2





0 0 . . . −i

0 0 . . . 0
...

...
. . .

...

i 0 . . . 0




; S3 =

1

2





1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . −1




.

(2.9)

The monopole solution is then given by [6, 19]:

φ =





−N−1
2 v 0 . . . 0 0

0 v 0 . . . 0

0 0 v . . . 0
...

...
...

. . .
...

0 0 0 . . . −N−1
2 v




+ (N + 1)v(~S · r̂)φ(r), (2.10)

~A(r) = ~S ∧ r̂
A(r)

g
(2.11)

where φ(r) and A(r) are ’t Hooft-BPS functions with φ(∞) = 1, φ(0) = 0, A(∞) =

−1/r. To compute the mass, using Eq. (2.8) one needs the following property:

1

2
ǫijkFij r̂k = −

~S · r̂
g r2

, (2.12)
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yielding the result

M =
2π(N + 1) v

g
. (2.13)

In order to calculate the abelian charge with respect to the U(1) factor in Eq.(2.3)

we need to first calculate the total magnetic flux sourced by the minimal monopole.

Normalizing the flux by the norm of φ, one finds

Fm =

∫

S2

dS · Tr φB
1√
2
(Trφ2)1/2

=
2π(N + 1)

g
√

N(N + 1)/
√

2
=

2π

g

√
2(N + 1)

N
. (2.14)

This should be equal to 4π gm, so

gm =
1

g

√
N + 1

2 N
. (2.15)

On the other hand, the electric coupling of the A0
µ field to the matter in the funda-

mental representation of SU(N + 1) is through the minimum coupling constant

e0 =
g√

2N(N + 1)
, (2.16)

as

t0 =
1√

2N(N + 1)

(
1N×N

−N

)
. (2.17)

Thus the minimum magnetic charge, in terms of the unit electric charge, is

gm =
1

2 N e0
(2.18)

which is 1/N of the charge of Dirac’s U(1) monopole [29]. In Sec.4 we will see that

this factor of N is the degree of the embedding of the fundamental group of the

unbroken U(1) into that of the unbroken gauge group.

Clearly, the choice made above (2.9) is nothing but one of the N possibilities. By

using the SU(2) subgroups lying in the (i, N + 1) - 2 × 2 subspaces, i = 1, 2, . . . , N ,

we finds N degenerate monopoles with identical masses and charges. This is the right

multiplicity for these monopoles to belong to the fundamental representation of the

dual SU(N) magnetic group.

2.2 Embedding the System in N = 2

The fact that the monopoles associated with the symmetry breaking G
〈φ〉6=0−→ H semi-

classically form a degenerate multiplet, however, does not in itself prove that they are
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nonabelian monopoles. The main problem is that the “unbroken” gauge group H (in

the case just considered, U(N)) can dynamically break down to an abelian subgroup.

Whether such a dynamical breaking occurs depends on the details of the quantum

system and it is in general difficult to decide what actually takes place.

In N = 2 supersymmetric models a definite answer can be given. If the model

above is embedded in the pure N = 2 theory

L =
1

8π
Im τcl

[∫
d4θ Φ†eV Φ +

∫
d2θ

1

2
WW

]
, (2.19)

(τcl ≡ θ0

π
+ 8πi

g2

0

), the SU(N) sector left “unbroken” by the adjoint scalar VEV (2.2)

describes a pure N = 2 SU(N) theory, which becomes strongly coupled at low energies

and is dynamically broken to the maximal Abelian subgroup U(1)N−1 [14, 15, 27].

In order to preserve an unbroken subgroup H we couple the theory to Nf hyper-

multiplets (quarks). The Lagrangian of this theory has the structure

L =
1

8π
Im Scl

[∫
d4θ Φ†eV Φ +

∫
d2θ

1

2
WW

]
+ L(quarks) +

∫
d2θ µ TrΦ2; (2.20)

L(quarks) =
∑

i

[

∫
d4θ {Q†

ie
V Qi + Q̃ie

−V Q̃†
i} +

∫
d2θ {

√
2Q̃iΦQi + mQ̃iQ

i} (2.21)

where m is the (common) bare mass of the quarks and we have defined the complex

coupling constant

Scl ≡
θ0

π
+

8πi

g2
0

. (2.22)

The parameter µ is the mass of the adjoint chiral multiplet, which breaks the super-

symmetry to N = 1.

In order to discuss unconfined monopoles, however, one must set µ = 0 and so

preserve the full N = 2 supersymmetry. After eliminating the auxiliary fields the

bosonic Lagrangian becomes

L =
1

4g2
F 2

µν +
1

g2
|Dµφ|2 + |DµQ|2 +

∣∣∣Dµ
¯̃Q
∣∣∣
2

+ L1 + L2, (2.23)

where

L1 = −1

8

∑

A

[
1

g2
(−i)fABC φ†

BφC + Q†tAQ − Q̃tAQ̃†
]2

= −1

8

∑

A

(
tAij

[
1

g2
(−2) [φ†, φ]ji + Q†

jQi − Q̃jQ̃
†
i

])2

; (2.24)
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L2 = −g2|
√

2 Q̃ tAQ|2 − Q̃ [m +
√

2φ] [m +
√

2φ]† Q̃†

− Q† [m +
√

2φ]† [m +
√

2φ] Q. (2.25)

In the construction of the monopole solutions we shall consider only the VEVs and

fluctuations around them which satisfy

[φ†, φ] = 0, Qi = Q̃†
i , (2.26)

and hence L1 can be set to zero.

We are interested in the vacua which would survive the above (µ 6= 0) perturbation

to N = 1. These vacua are parametrized by the integer r, which is the rank of the

unbroken nonabelian gauge symmetry plus one [16, 17]. In order to exhibit the

symmetry breaking SU(N + 1) → SU(N) × U(1) one may choose the adjoint VEV

to be

〈φ〉 = − m√
2

diag (1, 1, . . . , 1,−N), (2.27)

namely, as in Eq.(2.2) with v = − m√
2
. Together with the vanishing squark VEVs

〈Qi〉 = 〈Q̃i〉 = 0, (2.28)

this is easily seen to give vanishing contribution to the bosonic Lagrangian (2.23).

(2.27) and (2.28) represent a supersymmetric vacuum as L1 = L2 = 0.

One is left with the task of minimizing the first two terms of the bosonic La-

grangtian (2.23): the rest of the discussion is exactly as in Sec. 2.1: semiclassically

nothing changes. Quantum mechanically, however, there is an important difference.

In the vacuum characterized by the VEV (2.27) there are Nf massless quarks (and

squarks) in the fundamental representation of SU(N). This ensures that the sub-

group SU(N) is non-asymptotically free and remains unbroken in the infrared if

2(N + 1) > Nf ≥ 2N. This strong restriction on the number of flavors may be sig-

nificantly relaxed in cases in which the unbroken group is smaller. In this way one

finds that the only real restriction is that the number of flavors be at least equal to

2r if the monopole transforms in the fundamental representation of SU(r). (See e.g.,

Eq.(3.2).)

3 Quantum Nonabelian Monopoles

The above example of the SU(N +1) model nicely illustrates the fact that a semi-

classical treatment alone is not enough to ensure that the set of apparently degenerate
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monopoles associated with the symmetry breaking G
〈φ〉6=0−→ H are truly nonabelian.

The reason is that the “unbroken” gauge group H may well dynamically break down

to an abelian subgroup. If this occurs, one has only an approximately degenerate set

of monopoles whose masses differ by e.g., O( Λ2

〈φ〉). For this reason, the very concept

of nonabelian monopoles is never really semi-classical, in sharp contrast to the case

of abelian monopoles. Only if the “unbroken” gauge group H is not further broken

dynamically do the unconfined (topologically stable) nonabelian monopoles and dual

gauge bosons appear in the quantum theory.

Another subtlety is that it is not justified to study the system G
〈φ〉6=0−→ H with a

nonabelian subgroup H as a limiting situation of a maximal breaking, G
〈φ〉6=0−→ U(1)R,

where R is the rank of the group G, by letting some of the eigenvalues of 〈φ〉 to

coincide, as is sometimes done in the literature. To do so would introduce fictitious

degrees of freedom corresponding to massless, infinitely extended “solitons”. In this

limit all fields tend to constant values and so in fact these are not solitons at all.2

Indeed, in the case G = SU(N), such “massless monopoles” do not represent any

topological invariant as the fundamental group of any restored SU(N) is trivial.

It is hardly possible to overemphasize the importance of the fact [4, 6, 19] that

nonabelian monopoles, if they exist quantum mechanically, transform as irreducible

multiplets of the dual group H̃, not under H itself. Monopoles transforming under

the dual group evade the “no-go” theorem of [10] which is a topological obstruction

to the existence of monopoles transforming under the original group. The distinction

between monopoles transforming under the original versus the dual group is partic-

ularly evident in the cases of USp(2N) or SO(2N + 1) gauge theories which will be

considered below. For instance, in the system with spontaneous symmetry breaking,

USp(2N + 2) → USp(2N) × U(1), we find (see Section 5, Appendix A) that the

semi-classical (hence candidate) nonabelian monopoles form a degenerate (2N + 1)-

plet. While there are no (2N + 1)-dimensional representations of H = USp(2N),

the fundamental representation of the dual group H̃ = SO(2N + 1) has precisely

the desired dimension. Analogously, in the system with gauge symmetry breaking

SO(2N + 3) → SO(2N + 1) × U(1) we find 2N degenerate monopoles. Again this is

the right multiplicity for H̃ = USp(2N), the group dual to SO(2N + 1).

2This is analogous to what would happen to the ’t Hooft - Polyakov monopole of the spontaneously

broken SU(2)
v−→U(1) theory, if one were to apply the semi-classical formulae näively in the limit

v → 0.
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The theorem of [10] however does have an implication. It tells us that the gauge

symmetry of the system in the presence of nonabelian monopoles is not a direct

product

H ⊗ H̃

as sometimes suggested, but rather H̃ (or something else, if the physical degrees of

freedom relevant is a dyon).3 The doubling of the gauge symmetry does not take

place.

The strongest evidence so far that nonabelian monopoles do exist quantum me-

chanically and can even become dominant degrees of freedom in the infrared, comes

from the N = 2 theories of Refs. [16]-[19]. For instance, in the so-called r-vacua

(r < nf/2) with an effective SU(r) × U(1)N−r+1 gauge group in N = 2, SU(N + 1)

gauge theories, a set of magnetic particles, some in the fundamental representation

of SU(r), and some others singlets of SU(r), appear as light, low-energy effective

degrees of freedom. Their charge structure is identical to those found for the BPS

semiclassical monopoles of minimal mass [19].4 When an adjoint mass perturbation

breaking supersymmetry from N = 2 to N = 1 is added, these nonabelian monopoles

condense and give rise to dual superconductors (confinement) of nonabelian type, to-

gether with flavor symmetry breaking.

Identical sets of nonabelian monopoles appear in the r- vacua of N = 2 SO(N)

and USp(2N) theories [17, 18], with nonzero bare quark masses.5 Again, a detailed

quantum analysis shows the presence (and the crucial role) of monopoles appearing

from the breaking

SO(2N), SO(2N + 1) or USp(2N) → SU(r) × U(1)N−r+1, r <
nf

2
(3.1)

with the same charges as the semiclassical Goddard-Olive-Nuyts-Weinberg monopoles,

but massless and playing the role of the order parameters of confinement.

3A similar conclusion is reached by Bais and Schroers [5] who did a careful analysis of surviving

generators for SU(N) theories.
4In fact, the monopoles can acquire flavor quantum numbers due to fermion zero modes in anti-

symmetric representations of SU(Nf ) [33, 19], and the “dual quarks” in the effective Lagrangian [16]

at those points on the moduli space can naturally be in the fundamental representation of SU(Nf).

This makes the identification of “dual quarks” at these “r-vacua” with non-abelian monopoles pos-

sible. Why this particular flavor representation remains, however, is a dynamical question.
5As noted in [31] and in [17], this fact is related to the universality of these SCFTs appearing at

the related singularities of the N = 2 theories [32].
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These examples illustrate very clearly the crucial role played by the massless

flavors in the quantum theory. Without massless flavors the systems go through

dynamical (gauge) symmetry breaking and the nonabelian gauge symmetry of the

monopoles is destroyed.

In the presence of a sufficient number of flavors the dual SU(r) gauge symmetry in

(3.1) is exact in the infrared, thanks to the renormalization effects. Due to the flavor

charge of the nonabelian monopoles the dual SU(r) coupling constant is infrared-free

b
(dual)
0 ∝ −2 r + nf > 0, (3.2)

while the original electric theory is asymptotically free:

b0 ∝ −2 N + nf < 0, −N + 2 + nf < 0, −2 N − 2 + nf < 0, (3.3)

(for SU(N), SO(N), and USp(2N), respectively). This is how we understand the

actual occurrence of the quantum r - vacua in the N = 2, SU(N), SO(N) and

USp(2N) gauge theories, only in systems with flavors and with the value r limited

by
[nf

2

]
. When such a sign flip is not possible for some reason, such as in pure N = 2

SYM or in generic vacua of N = 2 theories, dynamical abelianization is expected to

and indeed does take place.

We are thus led to draw the following conclusion. For systems with a symmetry

breaking G → H , the general criterion for the persistence of nonabelian monopoles

in the quantum theory is that the system be such that it produces, upon symmetry

breaking, a sufficient number of massless flavors carrying charges in H , so as to protect

the latter group from becoming strongly-coupled in the infrared and from dynamically

breaking itself.

Let us illustrate this for different cases considered in this paper. A detailed and

concrete discussion was given in Section 2 for the system SU(N+1) → SU(N)×U(1),

which easily generalizes to a more general breaking patterns SU(N) → SU(r) ×
U(1)N−r+1.

The cases USp(2N) → SU(r) × U(1)N−r+1 is dealt with also quite straightfor-

wardly (see Sec. (3.2) of Ref. [17]). By embedding the system in the N = 2 context,

all the nf hypermultiplets can be given an equal nonzero bare mass, and the breaking

is achieved by the adjoint scalar VEV of the form,

φ =
1√
2

diag (im1, im2, . . . , imr, 0, . . . ,−im1,−im2, . . . − imr, 0, . . .) ; (3.4)

10



where mi → m. The condition r >
nf

2
guarantees that the subgroup SU(r) survives

in the infrared; this last condition is clearly compatible with the asymptotic freedom

of the original USp(2N) theory (nf < 2N + 2).6

In order to have the breaking USp(2N +2) → USp(2N)×U(1) (or a smaller USp

factor), a different setting is needed. We give only one of the hypermultiplets a large

bare mass m, and cancel it by

φ =
1√
2

diag (0, . . . , 0, im; 0, . . . , 0,−im) ; (3.5)

so as to satisfy the vacuum equations. The unbroken USp(2N) survives in the infrared

if nf − 1 ≥ 2N + 2 while the original USp(2N + 2) is asymptotically free for nf <

2N + 4. So in this case the only possible value is nf = 2N + 3; for a smaller USp

factor the condition is less severe.

In the case of the symmetry breaking, SO(2N + 2) → SO(2N) × U(1), we again

embed the system in a N = 2 theory with nf hypermultiplets of which one has a

large bare mass m, while others have none. When the adjoint scalar VEV is of an

appropriate form (Eq.(5.1) below, with v = im/
√

2), the SO(2N) components of the

other nf − 1 hypermultiplets remain massless. Thus for nf − 1 ≥ 2N − 2 (which is

compatible with the requirement that the original theory is asymptotically free, i.e.,

nf < 2N) the unbroken group SO(2N) is non asymptotically free. For more general

patterns of breaking, SO(2N +2) → SO(2 r)×U(1)N−r+1, it is even easier to arrange

the N = 2 system so that the unbroken SO(2 r) is non-asymptotically free (Eq. (3.2)

vs Eq. (3.3) ).

In the case of the diagonal breaking SO(2N) → U(N) considered also below, we

find that the standard embedding the system in the N = 2 version of the theory,

with the adjoint VEV of the form (5.24) with v = m, is not sufficient to guarantee

the unbroken group U(N) to remain so in the infrared. With the standard N =

2 embedding the number of the flavors in the vector representation is limited to

nf < 2N − 2, from the requirement that the original gauge group is asymptotically

free. But then the “unbroken” SU(N) theory necessarily grows strong in the infrared

6Of course, one could drop this requirement and work with a larger number of flavors, so that the

unbroken group H is always non aymptotically free, if one is satisfied with a semiclassical analysis

(m ≫ Λ). The point is that interesting things - such as light nonabelian monopoles - happen when

the underlying theory becomes strongly coupled in the infrared, and to study such a system one

must tune the bare masses m to O(Λ) or even to zero.
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and breaks itself to an abelian group U(1)N−1. Thus in order to discuss quantum

nonabelian monopoles in a second rank tensor representation of SU(N) one must

embed the system either in a N = 4 context, or to consider different matter content.

No such problem arises for the system with SO(2N) → SU(r)×U(1)N−r+1, with

r < N , where semiclassical monopoles in the fundamental as well as in the second

rank tensor representations appear. As long as r <
nf

2
, nf < 2N − 2, one easily

accomodates the asymptotic freedom of the original theory with infrared freedom of

the subgroup SU(r), by giving the equal bare masses to all the hypermultiplets and

by choosing the adjoint scalar VEVs of the form (5.24) with v = m. In the region

m ∼ Λ, the semiclassical reasoning only does not tell which nonabelian monopoles

survive in the infrared; the quantum analysis of [18] shows that it is the monopoles

in the fundamental representation of the dual SU(r) that becomes light due to the

quantum effects.

The situation is a little similar, in the case of N = 2 theories with symmetry

breaking, SU(N) → SU(r) × SU(s) × U(1)N−r−s+1. For r and s not too large, the

condition for the persistence of quantum monopoles f1 ≥ 2 r, f2 ≥ 2 s can be satisfied

in an appropriate vacuum, where f1 (f2) is the number of flavors with bare mass m1

(m2), f1+f2 < nf . All other nf−f1−f2 flavors must be given unequal bare masses mi.

Again, the case of maximal nonabelian factors ( r+s = N ) discussed in the subsection

4.2, is special, in that the only semiclassical monopoles are in the (r, s∗) representation

in this case, and in that the requirement of persistence of unbroken SU(r) × SU(s)

group, is not compatible with the asymptotic freedom of the fundamental SU(N)

interactions, in the standard N = 2 setting.

As we have already mentioned nonabelian monopoles also appear in the nontrivial

superconformal vacua of N = 2 models. Examples include the limiting case (r =
[nf

2

]
)

of the so-called r vacua

SU(N + 1), SO(2N), SO(2N + 1) or USp(2N) → SU(
nf

2
) × U(1)N−nf

2
+1 (3.6)

with equal nonzero bare quark masses, as well as all of the confining vacua of SO(N),

and USp(2N) theories with vanishing bare quark masses [17, 18]. The physics in these

cases, although perhaps the most interesting from the point of view of understand-

ing QCD, is complicated by the simultaneous presence of relatively nonlocal massless

monopoles and dyons. No local effective Lagrangian description is available, in gen-

eral. To the best of our knowledge, the study of the physical properties of this kind

of systems is still at an exploratory stage (see for example [20], however).
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4 Monopole Spectra from Homotopy Groups

In this section we attempt to classify topologically inequivalent monopole con-

figurations, leaving the explicit construction of the monopoles to Section 5 and

Appendix A. A monopole is topologically stable whenever a 2-sphere surrounding

the monopole supports a nontrivial gauge bundle. The topology of this bundle is

determined entirely by the homotopy type π1(H) of the transition function S1 −→ H

on the equatorial circle. This is not the only data that specifies a monopole config-

uration, in addition there is an adjoint Higgs field, which is valued in the original

gauge group G. Equivalence classes of the Higgs field under the unbroken H gauge

symmetry give a G/H-valued function. The asymptotic value of the Higgs field on

the 2-sphere at infinity gives a map S2 −→ G/H that represents a class π2(G/H).

Thus any configuration seems to be characterized by pair of topological invariants:

π1(H) and π2(G/H).

Here we are interested in only the subset of monopoles which are finite-energy,

regular field configurations of ’t Hooft-Polyakov type. In particular cases, e.g., when

the model is embedded in a N = 2 theory these monopoles are BPS: they satisfy

the linear, nonabelian Bogomolny equations. Otherwise, they are solutions only to

quadratic Yang-Mills-scalar coupled field equations. These equations allow us to

determine up to a constant the profile of the Higgs field from that of the gauge field

and vice versa. This means that if we are given only, for example, a class in π1(H) that

describes the gauge field configuration then there is at most one class in π2(G/H) that

describes the Higgs VEV. Thus each distinct BPS monopole7 is entirely characterized

by a class in π1(H). However there may be classes in π1(H) that do not correspond

to any class in π2(G/H) and therefore do not correspond to any BPS monopole. This

means that in general BPS monopoles are classified by only a subset of π1(H), the

subset that correspond to elements of π2(G/H).

So to classify BPS monopoles we need to know what the correspondence is be-

tween gauge field configurations π1(H) and Higgs field configurations π2(G/H). This

correspondence is determined by the nonabelian Bogomolny equations, but we claim

that this is the same correspondence that arises from the long exact sequence for

7In the following we shall use the term, “BPS monopoles”, having in mind the particularly elegant

cases such as N = 2 or N = 4 theories, but the whole discussion is valid for more general nonsingular

solitonlike monopoles.
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homotopy groups of fibrations

· · · → πn(H) → πn(G) → πn(G/H) → πn−1(H) → · · · . (4.1)

Using Poincaré’s theorem (π2(G) = 0 for any compact Lie group) and restricting our

attention to cases in which G/H is simply connected we find the short exact sequence

0 → π2(G/H)
f→ π1(H) → π1(G) → 0. (4.2)

The desired correspondence is then the above inclusion f of π2(G/H) into π1(H),

which implies that every class in π2(G/H) corresponds to a BPS monopole. On the

other hand if G is not simply connected then only one element of π1(H) of every

|π1(G)| (the cardinality of π1(G)) elements corresponds to a nonsingular monopole.8

The others correspond to configurations containing singular Dirac-like monopoles in

the original group G, which are enumerated by π1(G) and do not involve the Higgs

field.

Our problem is then reduced to the problem of finding π2(G/H). The above short

homotopy sequence yields the relation

π1(G) = π1(H)/π2(G/H). (4.3)

This formula, together with an embedding of H into G will always allow us to deter-

mine π2(G/H) and thus to enumerate the nonabelian monopoles. As every monopole

configuration corresponds to a class in π1(H) that is represented by the transition

function of the gauge bundle, this correspondence will automatically allow us to find

the transition functions in the cases below and thus to determine the topologies of

the gauge bundles. For this purpose we will make extensive use of Table 1 which lists

the centers and fundamental groups of the relevant semi-simple Lie groups.

4.1 SU(N + 1) → SU(N) × U(1)

Let us start by revisiting the case of an SU(N + 1) theory spontaneously broken to

H = U(N) = SU(N) × U(1)/ZN . The coset space is nothing but the projective

8Alternately, “the condition for a nonsingular monopole is that the topological charge is in the

kernel of the mapping π1(H) → π1(G)” [7]. While our perspective makes use of the Bogomolny

equations to identify the BPS monopoles, this perspective uses the topology of the gauge bundle

to identify the nonsingular monopoles. In view of Eq.(4.3) these two classification schemes yield

identical monopole spectra.

14



G Center π1(G)

SU(N + 1) ZN+1 0

USp(2N) Z2 0

SO(2N + 1) 1 Z2

Spin(2N + 1) Z2 0

SO(2N) Z2 Z2

Spin(4N) Z2 × Z2 0

Spin(4N + 2) Z4 0

Table 1: Centers and the fundamental groups of various compact Lie groups

sphere CP N = U(N + 1)/(U(N) × U(1)). By abuse of notation we will sometimes

omit the quotient, as we have done in the title of this subsection. This discussion can

be easily generalized to, for example, SU(N + 1) → SU(r) × U(1)N+1−r.

The generator of the unbroken U(1) gauge group is

Q = diag(1, · · · , 1,−N). (4.4)

Meanwhile the SU(N) consists of N + 1 by N + 1 matrices whose top left N by N

submatrix is in SU(N) and whose remaining row and column consist of all zeros and

a single one in the lower-right corner. The N elements

e2πiQ/N = diag(e2πi/N , · · · , e2πi/N , 1). (4.5)

appearing in U(1) are also the ZN center of the unbroken SU(N) group. This is the

reason for the ZN quotient in the definition of H .

G = SU(N + 1) is simply connected, and so π2(SU(N + 1)/U(N)) is equal to

π1(U(N)), implying that either one classifies nonsingular (BPS in a supersymmetric

embedding) monopoles. To calculate π1(U(N)) we use the exact sequence

0 = π1(ZN) → π1(SU(N) × U(1)) → π1(U(N))

→ π0(ZN ) → π0((SU(N) × U(1))/ZN ) = 0. (4.6)

By the Kunneth formula π1(SU(N) × U(1)) = π1(U(1)) = Z, while π0(ZN ) = ZN .

This short exact sequence then yields the equality

ZN = π1(U(N))/Z, (4.7)
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implying that π1(U(N)), the group that classifies monopoles, is isomorphic to Z

possibly times a finite cyclic group whose generator is a loop from the identity to the

generator of ZN . In fact there is no additional finite cyclic group: the new generator

is just 1/N of the old generator of the π1(U(1)) (See Fig.1.)

1

SU(N)

U(1)

e2 i/N 1

Figure 1: The smallest closed loop in U(N)

This point is easy to understand. In SU(N) × U(1), the only non-contractible

loops are those that go around the U(1) an integral number of times. However within

H = U(N), there is a loop that goes inside SU(N) from the identity element to the

ZN center, which can also be regarded as an element of U(1), and then comes back

to the identity inside of the U(1). If we travel around this loop N times then we

have gone around the U(1) one full time, and we have also made a loop in SU(N).

SU(N) is simply-connected, and so we can deform away the loop that we have made

in SU(N), and conclude that N times the generator of π1(U(N)) is the generator of

π1(SU(N) × U(1)) = π1(U(1)).

We have then learned that π1(U(N)) is isomorphic to Z, yielding precisely one

family of BPS monopoles.

The fact (Eq.(2.18)) that the U(1) magnetic charge of the nonabelian monopole

is 1/N in units of the Dirac quantum for the product theory is due to this N to

1 embedding of π1(SU(N) × U(1)) into π1(U(N)). Our monopole has a smaller

magnetic charge than any monopole that could exist in a theory with only this U(1)

because we have a smaller loop at our disposal with which to construct the transition

function of the gauge bundle. Equivalently the minimal electric charge with respect

to the U(1) in the SU(N + 1) → U(N) theory is N times the Dirac quantum for the

U(1) due to the constraint that all matter must descend from representations of the
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original SU(N + 1).

To make this discussion more concrete, let us present the gauge transformation

(transition function) along the equator of an S2 that surrounds a monopole [2]. The

coordinate along the equator is the azimuth φ, and we have the SU(N) element

diag(e−iφ(N−1)/N , eiφ/N , · · · , eiφ/N , 1) (4.8)

and the U(1) element

diag(e−iφ/N , · · · , e−iφ/N , e−iφ/N , eiφ). (4.9)

The action of these elements on matter in the fundamental representation is just the

product of the two,

diag(e−iφ, 1, · · · , 1, eiφ). (4.10)

It clearly is single-valued when one comes back around the equator. In fact it rep-

resents the generator of π1(U(N)), as it is just the loop described above in which

one travels to a root of unity in the U(1) and then returns to the identity inside the

SU(N). Thus we have found the transition function for a monopole configuration

with a single unit of charge. This monopole is nothing but the embedding of the

usual SU(2) monopole between the first unbroken color i = 1 and the abelian part

i = N + 1, i.e. the (1, 0, · · ·) - monopole.

One might be tempted to believe that the choice of unbroken color, that is the

choice of loop in SU(N), leads to N independent monopole solutions. However the

transition functions corresponding to all possible choices are homotopic to each other,

and so the topology of the bundle is independent of this choice. The dual gauge

transformations under which our monopoles transform, being continuous, necessarily

preserve the topology of the gauge bundle. Thus we cannot find the dimensions of

the representations inhabited by monopoles by merely counting distinct bundles nor

by counting homotopically inequivalent transition functions because all transition

functions in a given multiplet are homotopic.

The main point is that nonabelian monopoles transform under the dual gauge

group, which in this case is another copy of the original unbroken gauge group

H = U(N). To determine what representation of U(N) acts on our monopoles,

we decompose the monopoles in terms of the U(1) and SU(N) actions. We have seen

that the U(1) charge is the minimum possible value, 1/N , and so we need only find

the representation of SU(N) under which the monopoles transform.
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We claim that in general monopoles transform under some subset of the kth

symmetric tensor representation of the dual gauge group if their transition function

represents the element k ∈ Z in H . In general the subset and therefore the rep-

resentation is not determined by the topology,9 but in this case we have seen that

k = 1 and so our monopoles transform in a rank one tensor representation of SU(N).

There are only two such representations, the fundamental and antifundamental rep-

resentations. Thus we may conclude that the lightest mass monopoles transform in

the (anti-)fundamental representation of SU(N) and have charge 1/N under U(1), in

short, they transform under the N of U(N).

This construction is consistent with the general construction of [4, 6], summarized

in Appendix A, according to which each nonabelian monopole is associated with a

root vector corresponding to a broken generator, and their properties are determined

by the dual of such root, α∗ ≡ α/α · α. The monopoles arising from the breaking

SU(N + 1) → SU(N) × U(1) transform in the (anti-)fundamental representation of

the dual SU(N).

4.2 SU(N + M) → SU(N) × SU(M) × U(1)

This is a simple generalization of the previous case, yet is it interesting that the

unbroken group involves two non-abelian groups. The coset group is actually H =

(SU(N)×SU(M)×U(1))/Zk where k is the least common multiple k = LCM(N, M).

The coset space is nothing but the Grassmannian manifold GN,N+M(C) = U(N +

M)/(U(N) × U(M)). The homotopy groups are obtained by

0 = π2(H) → π2(G/H) → π1(H) = Z → π1(G) = 0. (4.11)

Therefore, the monopoles are classified by π2(G/H) = Z.

The generator of U(1) is

Q =

(
1
N
1N

− 1
M

1M

)

. (4.12)

It is clear that kQ has integer eigenvalues by definition, and hence e2πiQ is the gen-

erator of Zk. The transition function along the equator is given by eiQφ for the U(1),
9While the representation is not determined from the gauge bundle’s topology alone, it is deter-

mined by the Lie algebra-valued curvature 2-form of the bundle, which is the monopoles magnetic

flux. It transforms under the same representation as the monopole.
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which is canceled by the center elements of SU(N) and SU(M).

Following the same analysis as in the previous section, the smallest monopole

transforms as (N, M)1/k under SU(N) × SU(M) × U(1).

4.3 SO(N + 2) → SO(N) × U(1)

As always, the BPS nonabelian monopoles are classified by π2(G/H) = π2(SO(N +

2)/SO(N) × U(1)). This homotopy group may be evaluated using the short exact

sequence

0 = π2(SO(N + 2)) → π2(SO(N + 2)/SO(N) × U(1)) →
f→ π1(SO(N) × U(1)) = Z × Z2

g→ π1(SO(N + 2)) = Z2 → 0. (4.13)

It follows that π2(SO(N + 2)/SO(N) × U(1)) = Z, and so again we find precisely

one family of BPS monopoles.

To find the transition function we use the above map f , whose image is the set of

homotopy classes of transition functions of the gauge bundle. The surjectivity of g

implies that the image of f consists of only half of the elements of π1(H)

f(π2(SO(N + 2)/SO(N) × U(1))) = Z ⊂ Z × Z2 = π1(SO(N) × U(1)). (4.14)

The transition function representing the nontrivial element of Z2 is not in the image

of f and so describes a singular, Dirac-like monopole. In fact it is the usual Z2

monopole that exists in SO gauge theories even when the symmetry is unbroken [2].

The transition function of the smallest BPS monopole represents the generator of

Z ⊂ π1(H) which is the image under f of the generator of π2(G/H).

This monopole has a full unit of charge with respect to that of a pure U(1)

monopole because, unlike the previous case, the U(1) is not quotiented and so the

transition function S1 → H needs to wrap the entire U(1) in order to be single-valued.

Indeed we may explicitly construct the transition function around the equator as

follows. We can make the 2π rotation in SO(N) along any direction, and with no

loss of generality we take consider the rotation in the (j, k) plane. The unbroken

U(1) group is also a rotation but in the (N + 1, N + 2) plane. In other words, all the

action is within an SO(4) = SU(2)×SU(2) subgroup of SO(N +2), and the smallest

monopole is nothing but the monopole in one of the SU(2) factors of SO(4).
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There are NC2 = (N − 1)N/2 choices of (j, k) plane in SO(N). Apparently, there

are (N−1)N/2 independent monopole solutions. However this argument is too fast as

every choice of (j, k) leads to a homotopically equivalent transition function and so a

topologically equivalent bundle. Instead we apply the above proposal that monopoles

transform in a kth tensor representation of the dual gauge group if their transition

function represents the element k in the free part of π1(H). We have seen that for

the lightest monopoles, constructed above, k = 1 and so these monopoles transform

in the fundamental representation of the dual SO(N) (if N is even) or Sp(N − 1)

(if N is odd) gauge group. We will find the same result in the next section when we

explicitly construct the monopole solutions.

4.4 USp(2N + 2) → USp(2N) × U(1)

This example is simpler than the previous as USp groups are simply connected. The

usual short exact sequence then provides an isomorphism

π2

(
USp(2N + 2)

USp(2N) × U(1)

)
∼= π1(USp(2N) × U(1)) ∼= Z. (4.15)

Again we find a single family of BPS monopoles. However this time the simply-

connectedness of USp ensures that there are no singular monopoles and so every

transition function in π1(H) yields a desired gauge bundle. The mass is determined

by the π1(U(1)) contribution to the transition function, and so the lightest BPS

monopoles will be those corresponding to the degree one map from the equator to

U(1).

Again the fact that this map is the generator of the fundamental group implies

that these monopoles transform in the fundamental representation of the dual group,

which is SO(2N + 1). The appearance of a (2N + 1)-dimensional representation of

monopoles constructed using USp(2N) may appear surprising. We will see when we

explicitly construct these monopoles in the next section that in addition to the 2N

monopoles constructed from the N SU(2)’s in USp(2N) whose Cartan generators

generate the Cartan subalgebra of USp(2N), there is a (2N + 1)th monopole that is

the standard ’t Hooft Polyakov monopole corresponding to the extra unbroken U(1).

In the full quantum theory these apparently very different types of monopoles are

in fact degenerate and gauge equivalent under the dual SO(2N + 1). This nicely

illustrates the importance of distinguishing between the unbroken gauge symmetry

and its dual.
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4.5 SO(2N) → U(N)

This breaking is possible, for example, in an N = 2 SO(2N) gauge theory when the

quarks in the vector representation have a degenerate mass which is precisely canceled

by the adjoint VEV. As this mass approaches zero the full SO(2N) symmetry is

restored.

The homotopy exact sequence is now

0 = π2(SO(2N)) → π2(SO(2N)/U(N))
f→ π1(U(N)) = Z (4.16)

g→ π1(SO(2N)) = Z2 → 0 = π1(SO(2N)/U(N)). (4.17)

To see that π1(SO(2N)/U(N)) vanishes, we will use the fact that our monopoles are

all embeddings of the standard ’t Hooft Polyakov monopoles in broken SU(2) gauge

theories. Thus it suffices to consider the topology of a SO(4) → U(2) in which the

monopole is embedded, and so we need only show that π1(SO(4)/U(2)) = 0. SO(4)

is the twisted product of two three-spheres, and the action of SU(2) on each 3-sphere

is given by the identification of the 3-sphere with SU(2) and the group multiplication

in SU(2). We may then quotient SO(4) by U(2) in two steps, first we quotient by

the action of SU(2) and then by the action of U(1). As the SU(2) acts diagonally

on the two 3-spheres, SO(4)/SU(2) is SU(2)/Z2 = SO(3), which is topologically a

circle bundle over a 2-sphere with Chern class equal to two. The quotient of the total

space of this bundle by its fiber, a circle, is just the base space of the bundle, which is

a 2-sphere. The 2-sphere is simply-connected and so π1(SO(4)/U(2)) = π1(S
2) = 0

as claimed.

The surjectivity of g : Z → Z2 implies that the image of f is the set of even

integers. f must be one to one and so its domain, π2(SO(2N)/U(N)) must be the set

of integers. This is consistent with the above topological description of SO(2N)/U(N)

as the 2-sphere, as π2(SO(2N)/U(N)) = π2(S
2) = Z. Every element of π1(U(N)) =

Z describes a gauge bundle, but as only the even elements are in the image of f ,

only the even elements describe BPS monopoles. The odd elements are transition

functions of singular configurations that include the singular Z2 monopoles of the

original SO gauge theory. Due to the N to 1 embedding of U(1) in U(N), the lowest

possible monopole charge is 1/N of the Dirac quantum corresponding to the element

1 ∈ π1(U(N)). Therefore the minimum possible charge of a BPS monopole is 2/N ,

corresponding to the smallest even element 2 ∈ π1(U(N)).
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Using our proposed relation between elements of the fundamental group and

representations we then conclude that, in addition to the above U(1) charge these

monopoles transform under some second rank tensor representation of the dual SU(N)

gauge symmetry. However topological considerations alone do not allow us to deter-

mine which second rank tensor representation yields a BPS monopole. The answer to

this question will need to await the next section, in which the monopoles are explicitly

constructed.

4.6 SO(2N + 1) → U(N)

The analysis in this case proceeds identically to the preceding case. The verification

that π1(SO(2N +1)/U(N)) = 0 again reduces to a computation of SO(4)/U(2) using

the fact that the monopole solution is the embedding of an SU(2) monopole (or

more accurately perhaps an SO(3) monopole) into some SO(4) → U(2) subsector.

And so we again conclude that there are BPS nonabelian monopoles with charge

2/N under the unbroken U(1) that transform under an unknown second rank tensor

representation of the dual SU(N). The fact that the topology does not tell us which

second rank tensor to use is highlighted by the fact that, as we will see, despite

the identical homotopy groups in the two examples the corresponding monopoles

transform under different second rank tensor representations of the dual SU(N).

4.7 USp(2N) → U(N)

This breaking is possible, for example, in an N = 2 USp(2N) theory when the N

quarks have a degenerate mass which is precisely canceled by the adjoint VEV. The

fundamental representation of USp(2N) decomposes as 2N = (N, +1) ⊕ (N,−1).

The center of SU(N) can be regarded as an element of U(1), and hence the quotient

by ZN .

USp(2N) is simply connected and so every transition function in π1(SU(N)) is

the image of some Higgs field in π2(USp(2N)/SU(N)). Thus for every allowed charge

in π1(SU(N)) = Z there is a solution to the Bogomolny equations yielding a BPS

monopole configuration The smallest such charge, in units of the Dirac quantum of

the U(1), is then 1/N . The corresponding transition function is a representative of

the generator of π1(U(N)). This may be written as a product of generators of the

22



fundamental groups of SU(N) and U(1), such as diag(eiφ/N , · · · , eiφ/N , e−i(N−1)φ/N ) ∈
SU(N) and e−iφ/N ∈ U(1) which multiply to

diag(1, · · · , 1, e−iφ) ∈ U(N).

Looking at the whole fundamental representation of USp(2N), one can see that it

is a monopole embedded in SU(2) ≃ USp(2) ⊂ USp(2N). The monopoles therefore

transform as the fundamental representation of the SU(N) group, as follows, for

example, from the fact that the transition function represents 1 ∈ π1(H).

4.8 SO(N + 2M) → SO(N) × U(M)

The breaking is possible, for example, in an N = 2 SO(N + 2M) theory when M

quarks have a degenerate mass which is precisely canceled by the adjoint VEV. The

fundamental representation of SO(N + 2M) decomposes as N + 2M = (N, 1) ⊕
(1, M) ⊕ (1, M).

Combining analyses in Sec. 4.3, 4.5, 4.6, we find that the monopoles are classified

according to π2(SO(N + 2M)/(SO(N) × U(M)) = π1(U(M)) = Z. When N is

even, the monopoles transform under the dual SO(N)×U(M) group as (N, M)1/M ⊕
(1, M(M−1)

2
)2/M , where the latter may decay into the pair of the former. When N is

odd, the monopoles transform under the dual USp(N−1)×U(M) as (N−1, M)1/M ⊕
(1, M(M+1)

2
)2/M , where the latter may decay into the pair of the former.

4.9 USp(2N + 2M) → USp(2N) × U(M)

The breaking is possible, for example, in an N = 2 USp(2N + 2M) theory when M

quarks have a degenerate mass which is precisely canceled by the adjoint VEV. The

fundamental representation of USp(2N + 2M) decomposes as N + 2M = (2N, 1) ⊕
(1, M) ⊕ (1, M).

Combining analyses in Sec. 4.4 and 4.7, we find that the monopoles are classi-

fied according to π2(USp(2N + 2M)/(USp(2N) × U(M)) = π1(U(M)) = Z. The

monopoles transform under the dual SO(2N +1)×U(M) group as (2N +1, M)1/M ⊕
(1, M(M−1)

2
)2/M , where the latter may decay into the pair of the former.
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5 Explicit Constructions of BPS Nonabelian Monopoles

In this section we construct the lightest nonabelian monopole solutions by simply

identifying various minimally embedded SU(2) subgroups [34] which are broken to

U(1), and then by embedding the ’t Hooft-Polyakov monopoles into this SU(2) and

adding a constant term to φ so that in a given spacial direction it takes the standard,

prescribed form. The results agree in all cases with the general formulae given in

Appendix A and with the classifications of Section 4. The SU(N +1) case has already

been discussed in Section 2.1, and so below we consider the SO(N) and USp(2N)

examples.

In the previous section we characterized monopoles by π1(H), whose representa-

tives are transition functions of the gauge bundles of BPS monopoles. In this section

we will find the adjoint scalar profiles, whose gauge equivalence classes represent ele-

ments of π2(G/H). The interested reader need only substitute these results into the

nonabelian Bogomolny equations to find the corresponding gauge potentials.

The explicit solutions of the adjoint scalars will allow us to determine in each case

the representation of the dual gauge group under which the nonabelian monopoles

transform. The relevant pairs of dual groups are listed in Table 2.

SU(N)/ZN ⇐⇒ SU(N)

SO(2N) ⇐⇒ SO(2N)

SO(2N + 1) ⇐⇒ USp(2N)

Table 2: Some examples of dual pairs of groups

5.1 SO(2N + 3) → SO(2N + 1) × U(1)

An adjoint scalar VEV of the form

φ = i





0 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 v

0 0 . . . −v 0





= i




0(2N+1)×(2N+1)

0 v

−v 0



 . (5.1)
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breaks an SO(2N + 3) gauge symmetry to SO(2N + 1) × U(1). We will use two

minimally-embedded SU(2) subgroups:

S1 =
i

2





. . .
...

...
...

...

. . . 0 0 1 0

. . . 0 0 0 −1

. . . −1 0 0 0

. . . 0 1 0 0





, S2 =
i

2





. . .
...

...
...

...

. . . 0 0 0 1

. . . 0 0 1 0

. . . 0 −1 0 0

. . . −1 0 0 0





, (5.2)

S3 =
i

2





. . .
...

...
...

...

. . . 0 1 0 0

. . . −1 0 0 0

. . . 0 0 0 1

. . . 0 0 −1 0





. (5.3)

S̃1 =
i

2





. . .
...

...
...

...

. . . 0 0 −1 0

. . . 0 0 0 −1

. . . 1 0 0 0

. . . 0 1 0 0





, S̃2 =
i

2





. . .
...

...
...

...

. . . 0 0 0 −1

. . . 0 0 1 0

. . . 0 −1 0 0

. . . 1 0 0 0





, (5.4)

S̃3 =
i

2





. . .
...

...
...

...

. . . 0 −1 0 0

. . . 1 0 0 0

. . . 0 0 0 1

. . . 0 0 −1 0





. (5.5)

We may create a nonabelian monopole using the first SU(2), in which case the

adjoint scalar profile is:

φ =
i

2





. . .
...

...
...

...

. . . 0 −v 0 0

. . . v 0 0 0

. . . 0 0 0 v

. . . 0 0 −v 0





− v(~S · r̂)φ(r); (5.6)
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or by using the second SU(2):

φ =
i

2





. . .
...

...
...

...

. . . 0 v 0 0

. . . −v 0 0 0

. . . 0 0 0 v

. . . 0 0 −v 0





− v(~̃S · r̂)φ(r). (5.7)

The two types of monopole have the same mass:

M =
4πv

g
. (5.8)

As there are (2N +1) rows of broken group generators, one can construct in this way

2N independent minimally-embedded monopoles. For the last row one is forced to

use the non-minimal SO(3) embedding:

S1 = i





. . .
...

...
...

. . . 0 −1 0

. . . 1 0 0

. . . 0 0 0




, S2 = i





. . .
...

...
...

. . . 0 0 −1

. . . 0 0 0

. . . 1 0 0




, (5.9)

S3 = i





. . .
...

...
...

. . . 0 0 0

. . . 0 0 1

. . . 0 −1 0




; φ = v(~S · r̂)φ(r), (5.10)

but this is a non-minimal monopole with mass

M =
8πv

g
, (5.11)

twice that of the minimal ones. To summarize, there are 2N degenerate minimally

embedded monopoles. We note again that no irreducible representation of the gauge

group SO(2N +1) has such a multiplicity, but this is precisely the multiplicity of the

fundamental representation of the dual group, USp(2N).
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5.2 SO(2N + 2) → SO(2N) × U(1)

This breaking pattern may be achieved with the Higgs VEV:

φ = i





0 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 v

0 0 . . . −v 0





= i




0 · 1(2N)×(2N)

0 v

−v 0



 . (5.12)

We use minimally-embedded SU(2) subgroups as in the previous case. The formulas

for S,S̃,φ are the same. We find 2N monopoles with mass:

M =
4πv

g
. (5.13)

This is the right number of degenerate degrees of freedom for a monopole in the vector

representation of the dual SO(2N) magnetic group.

5.3 USp(2N + 2) → USp(2N) × U(1)

The generic USp(2N) matrix in the fundamental representation has the following

form:

Z =

(
A B

B∗ −At

)
, (5.14)

with A† = A and Bt = B. The symmetry breaking field is:

φ =





0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . v 0 . . . 0

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . −v





=





0 · 1N×N

v

0 · 1N×N

−v




. (5.15)

There are three kinds of monopoles:
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1 First type

We use the SU(2) subgroup with B = 0.

S1 =
1

2





. . .

0 1 0 0

1 0 0 0

. . .

0 0 0 −1

0 0 −1 0





; S2 =
1

2





. . .

0 −i 0 0

i 0 0 0

. . .

0 0 0 i

0 0 −i 0





, (5.16)

S3 =
1

2





. . .

1 0 0 0

0 −1 0 0

. . .

0 0 −1 0

0 0 0 1





. (5.17)

to construct the adjoint scalar profile

φ =





. . .

v/2 0 0 0

0 v/2 0 0
. . .

0 0 −v/2 0

0 0 0 −v/2





− v (~S · r̂)φ(r). (5.18)

There are N monopoles of this kind, each with a mass of M = 4πv
g

.

2 Second type

Alternately we may use the embedding

S1 =
1

2





. . .

0 0 0 1

0 0 1 0
. . .

0 1 0 0

1 0 0 0





; S2 =
1

2





. . .

0 0 0 i

0 0 i 0
. . .

0 −i 0 0

−i 0 0 0





; (5.19)
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S3 =
1

2





. . .

−1 0 0 0

0 −1 0 0
. . .

0 0 1 0

0 0 0 1





(5.20)

leading to an adjoint scalar profile

φ =





. . .

−v/2 0 0 0

0 v/2 0 0
. . .

0 0 v/2 0

0 0 0 −v/2





− v(~S · r̂)φ(r). (5.21)

There are again N monopoles of this kind, each with M = 4πv
g

.

3 Third type

The last monopole lies in the SU(2) subgroup

S1 =
1

2





. . .

0 1

. . .

1 0




; S2 =

1

2





. . .

0 −i

. . .

i 0




; S3 =

1

2





. . .

1 0

. . .

0 −1




.

(5.22)

There is only one monopole of this type,

φ = 2 v (~S · r̂) φ(r), M =
4πv

g
. (5.23)

To summarize, we have found 2N + 1 degenerate monopoles states in the system

USp(2N + 2) → USp(2N) × U(1). This is exactly the number of degrees of freedom

for a monopole in the vector representation of the dual SO(2N + 1) magnetic group.

This case, like that of Subsec. 5.1, nicely illustrates the fact that soliton states of

USp(2N) gauge-invariant system appear with multiplicity appropriate for the dual

group - SO(2N + 1) in this case - and not with multiplicities of any irreducible

representation of the original group USp(2N).
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5.4 SO(2N) → U(N)

This symmetry breaking pattern is characteristic of the adjoint scalar profile

φ = i





0 v . . . . . . 0 0

−v 0 . . . . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 . . . . . . 0 v

0 0 . . . . . . −v 0





. (5.24)

Consider first of all the SO(4) → U(2) case. We use the basis Si, S̃i in Eq. (5.2)-(5.5);

these two SU(2) subgroups are orthogonal and commute with each other. As the S̃i

subgroup is actually unbroken we can build a monopole using the Si generators only:

φ = 2v(~S · r̂)φ(r), (5.25)

with a mass

M =
8πv

g
. (5.26)

In the general SO(2N) → U(N) case, we find N(N−1)
2

degenerate monopoles, which

can be interpreted as an antisymmetric 2-tensor representation of the (dual) SU(N).

5.5 SO(2N + 1) → U(N)

This symmetry breaking pattern results from the adjoint Higgs VEV

φ = i





0 v . . . . . . 0 0 0

−v 0 . . . . . . 0 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

...

0 0 . . . . . . 0 v 0

0 0 . . . . . . −v 0 0

0 0 . . . . . . 0 0 0





. (5.27)

In this case we may again construct all N(N−1)
2

monopoles found above in the SO(2N) →
U(N) system. But there are another N monopoles corresponding to the following em-
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beddings

S1 = i





. . .
...

...
...

. . . 0 0 0

. . . 0 0 1

. . . 0 −1 0




, S2 = i





. . .
...

...
...

. . . 0 0 −1

. . . 0 0 0

. . . 1 0 0




, (5.28)

S3 = i





. . .
...

...
...

. . . 0 1 0

. . . −1 0 0

. . . 0 0 0




. (5.29)

The scalar profile is then

φ = i





0 v . . . . . . 0 0 0

−v 0 . . . . . . 0 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

...

0 0 . . . . . . 0 0 0

0 0 . . . . . . 0 0 0

0 0 . . . . . . 0 0 0





+ v(~S · r̂)φ(r), (5.30)

and the mass :

M =
8πv

g
. (5.31)

We then find in all N(N+1)
2

degenerate monopoles which transform in the symmetric

2-tensor representation of SU(N).

5.6 USp(2N) → U(N)

This gauge symmetry breaking pattern results from the Higgs VEV

φ =

(
v · 1N×N

−v · 1N×N

)

. (5.32)

In this case we describe the two least massive species of monopole, one of which

transforms in the fundamental representation of the dual SU(n) and the other in the

antisymmetric 2-tensor representation.
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1 Fundamental Monopole

We take the following SU(2) subgroups:

S1 =
1

2





0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0





; S2 =
1

2





0 . . . 0 −i . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

i . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0





; (5.33)

S3 =
1

2





1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

0 . . . 0 −1 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0





. (5.34)

The resulting Higgs VEV is

φ =





0 . . . . . . 0 0 . . . . . . 0
... v

...
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . . . . v 0 . . . . . . 0

0 . . . . . . 0 0 . . . . . . 0
...

. . .
...

... −v
...

...
. . .

...
...

. . .
...

0 . . . . . . 0 0 . . . . . . −v





+ 2v(~S · r̂)φ(r). (5.35)

These embeddings describe N monopoles with the same mass M = 8πv
g

. They trans-

form in the fundamental representation of the dual SU(N).

2 Antisymmetric 2-Tensor Monopole

If instead we consider the following SU(2) subgroups:

S1 =

(
0 A1

A∗
1 0

)
, S2 =

(
0 A2

A∗
2 0

)
, S3 =

(
B3 0

0 −BT
3

)
, (5.36)
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A1 =
1

2





0 . . . 1 . . . 0
...

. . .
...

1
. . .

...
...

. . .
...

0 . . . . . . . . . 0





; A2 =
1

2





0 . . . −i . . . 0
...

. . .
...

−i
. . .

...
...

. . .
...

0 . . . . . . . . . 0





; (5.37)

B3 =
1

2





1 . . . . . . . . . 0
...

. . .
...

... 1
...

...
. . .

...

0 . . . . . . . . . 0





. (5.38)

then we may construct the solutions

φ =

(
Bφ 0

0 −BT
φ

)
+ 2v(~S · r̂)φ(r) (5.39)

where

Bφ =





0 . . . . . . . . . 0
... v

...
... 0

...
... v

...

0 . . . . . . . . . v





. (5.40)

These solutions describe N(N−1)
2

degenerate monopoles that transform in the antisym-

metric tensor representation of the dual SU(N). Their mass is twice the mass of the

fundamental monopole:

M =
16πv

g
. (5.41)

5.7 Others

Other breaking patterns discussed in the previous section, SU(N + M) → SU(N) ×
SU(M) × U(1)/Zk, SO(N + 2M) → SO(N) × U(M), and USp(2N + 2M) →
USp(2N) × U(M), can be discussed basically by fixing the index of the latter gauge

factor and carry through the same analysis as those in the similar breaking patterns

presented in this section.
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6 Summary and Discussion

In this paper we have constructed magnetic monopoles arising in spontaneously

broken gauge theories with several symmetry breaking patterns G → H . Our work is

based on the results of our predecessors [1]-[9], and should be regarded as a continu-

ation of their efforts. Some overlap and repetition of the results discussed here with

the earlier ones [1]-[11] is inevitable. Nevertheless, we believe that the present work

constitutes a qualitatively new contribution to this chain of developments.

Most importantly, the conditions under which these nonabelian monopoles survive

quantum effects have been clarified, as is discussed in Sections 2 and 3. In particular

there is now strong evidence from N = 2 theories that these monopoles become light

due to quantum effects and emerge as the dominant low-energy degrees of freedom

in certain vacua; it was pointed out that the presence of an appropriate number of

massless flavors in the underlying theory is crucial for this to happen. As illustrated

in SU(N) examples in Section 2 and discussed in a more general context in Section 3,

a consistent, quantum theory of nonabelian monopoles can be constructed by embed-

ding the system in N = 2 supersymmetric theories coupled to an appropriate set of

hypermultiplets.

Although we considered in this paper unconfined monopoles mainly, a rather sur-

prising hint about the nature of nonabelian monopoles comes from considering the

systems in which the “unbroken” group H is further broken by some other VEVs

at a much smaller mass scale. The nonabelian monopoles whose gauge bundles are

described by a transition function in π1(H) are confined by the nonabelian vortices

whose squark profile wraps the same class in π1(H), in the Higgs phase of the H

theory. In Ref. [21] it is demonstrated that the vortices of the low-energy system

are described by a continuous family of solutions transforming under an irreducible

representation of the dual group H̃. The monopole-vortex flux matching argument

presented in [26] and proven explicitly for the case

SU(N + 1)
v1−→ SU(N) × U(1)

ZN

v2−→ 0, v1 ≫ v2, (6.1)

implies that the monopoles corresponding to all classes in π1(H) are indeed confined.

The existence of a continuous degenerate family of the vortices π1(H) implies a cor-

responding, continuous family of their sources: the monopoles. Most interestingly,

the existence of the quantum mechanical vortex zero modes also requires nontrivial

flavors: the dual group itself involves the original flavor group [21, 26].
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Three complementary approaches: (i) topological arguments in which monopole

field configurations are classified by homotopy groups (Section 4); (ii) general for-

mulae à la GNO-Weinberg, making use of the root system structures of the groups

(Appendix A), and (iii) the explicit construction of BPS solutions (Section 5), have

been used in the present paper. Each of these approaches has some advantage over

the others. The (topological) stability of the monopoles as well as the U(1) charge as

compared with the minimum Dirac quantum are best explained in the first approach.

On the other hand, the multiplet structure of the minimal monopoles, and the reason

why they form an irreducible multiplet of the dual group H̃, is best understood in

the second approach and easily seen in the third. Finally the explicit construction

(iii) provides a check of the whole program and furthermore is the simplest way (ex-

cept for MQCD, which yields the same answers) to compute the monopole masses

and representations. The calculation of the U(1) magnetic charge is explained in

Appendix A.

The results for the quantum numbers of the minimal nonabelian monopoles in

various cases are summarized in Table 3. Note that in some cases the minimal non-

abelian monopoles do not belong to the fundamental representation of the unbroken

(dual) group.

The pattern of the monopole representations appearing in various cases found here

can be understood based on the Montonen-Olive duality of N = 4 models. Because

of the self-duality, the representation of the monopoles under the dual group must be

the same as that of the massive vector bosons with respect to the original, electric

group. For instance, when SO(2N) → U(N), the massive vector bosons are in the

anti-symmetric tensor of U(N), and so are indeed monopoles. When USp(2N +2) →
USp(2N)×U(1), the dual theory breaks from SO(2N + 3) → SO(2N + 1)× SO(2),

and the massive vector bosons are in the vector representation. Indeed, we find

monopoles in the vector representation of SO(2N + 1).

A more non-trivial example is the breaking SO(2N + 1) → U(N), where the

electric theory has monopoles in the rank-two symmetric tensor representation of

U(N), while the magnetic USp(2N) → U(N) theory has massive vectors in the same

representation. The electric SO(2N + 1) theory has massive vector bosons in the

fundamental and anti-fundamental representations of U(N), as well as in rank-two

anti-symmetric tensor representations that are twice as heavy. On the other hand,

the magnetic USp(2N) theory has monopoles in the fundamental, anti-fundamental
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G H Dual Group Irrep U(1)

SU(N + 1) SU(N) × U(1)/ZN SU(N) × U(1) N 1/N

* SU(N + 1) SU(r) × U(1)N−r/Zr SU(r) × U(1)N−r+1 r 1/r

USp(2N + 2) USp(2N) × U(1) SO(2N + 1) × U(1) 2N + 1 1

* USp(2N + 2) SU(r) × U(1)N−r/Zr SU(r) × U(1)N−r+1 r 1/r

USp(2N) SU(N) × U(1)/ZN SU(N) × U(1) N 1/N

SO(2N + 3) SO(2N + 1) × U(1) USp(2N)× U(1) 2N 1

SO(2N + 2) SO(2N) × U(1) SO(2N) × U(1) 2N 1

SO(2N) SU(N) × U(1)/ZN SU(N) × U(1) N(N − 1)/2 2/N

* SO(2N) SU(r) × U(1)N−r+1/Zr SU(r) × U(1)N−r+1 r 1/r

SO(2N + 1) SU(N) × U(1)/ZN SU(N) × U(1) N(N + 1)/2 2/N

* SO(2N + 1) SU(r) × U(1)N−r+1/Zr SU(r) × U(1)N−r+1 r 1/r

SU(N + M) SU(N) × SU(M) × U(1)/Zk SU(N) × SU(M) × U(1) (N, M) 1/k

SO(2N + 2M) SO(2N) × U(M) SO(2N) × U(M) (2N, M) 1/M

SO(2N + 2M + 1) SO(2N + 1) × U(M) USp(2N)× U(M) (2N, M) 1/M

USp(2N + 2M) USp(2N) × U(M) SO(2N + 1) × U(M) (2N + 1, M) 1/M

Table 3: Stable nonabelian magnetic monopoles of minimum mass arising from the breaking

G → H and their charges. The U(1) magnetic charge is given in the unit of the minimum

Dirac quantum, 1/2 e0, where e0 is the minimum electric U(1) charge in the system. k in

the SU(N +M) case is the least common multiple of N and M . The cases with nonmaximal

nonabelian factors (*), r < N , are qualitatively different from the case with r = N in that

monopoles in the fundamental as well as in the second-rank tensor representation of SU(r)

appear: only the monopoles in the fundamental representation of SU(r) are indicated. Note

that these do not exist for r = N in the case of G = SO(N), as most easily seen from the

explicit construction of Sec. 5.4 and Sec. 5.5.

representation with the minimum charge, as well as in rank-two anti-symmetric ten-

sor with twice as large charge and hence twice as large mass (they are not in Table 3

because they can decay into monopoles in the fundamental representation; see Sec-

tion 5.6). This agreement is also manifest in MQCD, where the representations are

determined by the same orientifold projections, employing O3-planes for N = 4 and

O4-planes for N = 2.

Finally, the consistency with Olive-Montonen duality can be checked also in the

cases with two nonabelian factors in H . For instance, in the system SU(N + M) →
SU(N)×SU(M)×U(1)/Zk both the massive gauge bosons of the dual theory and the

monopoles of the electric theory are in the (N, M) representation. Analogously for the
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case, SO(2N +2M) → SO(2N)×U(M). In the case SO(2N +2M +1) → SO(2N +

1) × U(M), the dual theory breaks as USp(2N + 2M) → USp(2N) × U(M), gener-

ating the massive gauge bosons in the (2N, M) representation, consistently with our

description in terms of the monopoles in the electric theory. Finally, the monopoles

in the (2N + 1, M) found in the system USp(2N + 2M) → USp(2N) × U(M), has

an equivalent, dual description in terms of massive gauge bosons of the dual theory

SO(2N + 2M + 1) → SO(2N + 1) × U(M).

Another, independent consistency check of our general results can be made by

using the (Lie algebra) isomorphism between the groups USp(4) and SO(5). Consider

the USp(4) theory with two different symmetry breaking patterns

〈φ〉1 =





0 0

0 v

0 0

0 −v




, USp(4) → USp(2) × U(1), (6.2)

〈φ〉2 =





v 0

0 v

−v 0

0 −v




, USp(4) → U(2). (6.3)

In the first system, we find (see Table 3, Section 5) that the minimal monopoles are

in the vector (3) of the SO(3) group, which is dual to USp(2), while in the second

system the minimal monopoles are in the fundamental representation (2) of the dual

SU(2) group, but there are also monopoles in the antisymmetric representation (1 in

this case) with twice the minimal mass.

In the SO(5) theory, again one has two inequivalent ways to break the gauge

symmetry,

〈φ〉1 =





0 v

−v 0

0 v

−v 0

0




, SO(5) → U(2), (6.4)
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〈φ〉2 =





0 v

−v 0

0 0

0 0

0




, SO(5) → SO(3) × U(1). (6.5)

According to our general results, the monopoles are in the symmetric second rank

tensor representation (3) of SU(2) in the first system while in the second case they

are fundamentals (2) of the dual group USp(2) ∼ SU(2) of SO(3). In this last case

there is also a non-minimal monopole of mass twice the minimal value.

The monopole spectra in the two theories thus agree completely, as expected.

Actually, the correspondence can be shown to be exact: the first (second) pattern of

the symmetry breaking in the USp(4) theory corresponds to the second (first) type

of the adjoint VEV in the SO(4) theory.

The whole discussion can actually be understood very easily from the general

formula discussed in Appendix A, as the root vector system of the USp(4) group

corresponds simply to a 45 degree rotation of that of SO(5) in the bases used above

as seen in Figure 2. The mass spectrum may be read off of this figure as well.

Figure 2: Root vectors of SO(5) (left) and USp(4) (right). The root vectors in the horizon-

tal directions represent the unbroken SU(2) group in the case of the first breaking pattern

(Eq.(6.2)) for SO(5) and the second breaking pattern (Eq.(6.5)) for USp(4). The masses

of the monopoles are proportional to the heights of the (broken) root vectors.

An analogous check, using the isomorphism between SO(6) and SU(4) which are

spontaneously broken respectively to SO(4)×U(1) and SU(2)× SU(2)× U(1), also

38



yields consistent results: the monopoles are in the 4 = (2, 2) of SO(4) ∼ SU(2) ×
SU(2). Another possibility is to consider the breaking patterns SO(6) → SU(3) ×
U(1) and SU(4) → SU(3) × U(1). Again, we learn from Table 3 that the minimal

monopoles belong to a triplet (or an antitriplet) of the unbroken SU(3) in both

theories, consistently.
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Appendix A General Formulae

In this appendix we review some general formulae [6, 4]. Nonabelian monopoles

appear in a system with the gauge symmetry breaking

G
〈φ〉6=0−→ H (A.1)

with a nontrivial π2(G/H) and H nonabelian.

The normalization of the generators can be chosen [4] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · H, (A.5)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The root

vectors orthogonal to h belong to the unbroken subgroup H .

The monopole solutions are constructed from various SU(2) subgroups of G that

do not commute with H ,

S1 =
1√
2α2

(Eα + E−α); S2 = − i√
2α2

(Eα − E−α); S3 = α∗ · H, (A.6)

where α is a root vector associated with a pair of broken generators E±α. α∗ is a dual

root vector defined by

α∗ ≡ α

α · α. (A.7)

The symmetry breaking (A.1) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole [30, 28]

lying in this subgroup and adding a constant term to φ so that it behaves correctly

asymptotically, one easily constructs a solution of the equation of motion [6, 19]:

Ai(r) = Aa
i (r,h · α) Sa; φ(r) = χa(r,h · α) Sa + [h− (h · α) α∗] ·H, (A.8)

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi; (A.2)

[Eα, Eβ ] = Nαβ Eα+β (α + β 6= 0). (A.3)

αi = (α1, α2, . . .) are the root vectors.
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where

Aa
i (r) = ǫaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (A.9)

is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0,∞)) = φ0.

The mass of a BPS monopole is then given by

M =

∫
dS · Tr φB, B =

ri(S · r)
r4

. (A.10)

This can be computed by going to the gauge in which

B =
rS3

r3
=

r

r3
α∗ · H, (A.11)

to be

M =
4πhiα

∗
j

g
Tr Hi Hj. (A.12)

For instance, the mass of the minimal monopole of SU(N + 1) → SU(N)×U(1) can

be found easily by using Eqs.(B.4)-(B.10)

M =
2π v (N + 1)

g
. (A.13)

For the cases SO(N + 2) → SO(N) × U(1) and USp(2N + 2) → USp(2N) × U(1),

where TrHi Hj = C δij , one finds

M =
4π C h · α∗

g
=

4 π v

g
, (A.14)

while for SO(2N) → SU(N)×U(1), SO(2N +1) → SU(N)×U(1), and USp(2N) →
SU(N) × U(1), the mass is

M =
8π C h · α∗

g
=

8 π v

g
. (A.15)

In order to get the U(1) magnetic charge11 (the last column of Table 3), we first

divide by an appropriate normalization factor in the mass formula Eq.(A.10)

Fm =

∫
dS · Tr φB

Nφ
=

∫
dS · B(0), B =

ri(S · r)
r4

, (A.16)

as was done in Eq.(2.14). The result, which is equal to 4πgm by definition, gives the

magnetic charge. The latter must then be expressed as a function of the minimum

11In this calculation it is necessary to use the generators normalized as Tr T (a) T (b) = 1
2δab, such

that B = B(0) T (0) + . . . .
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U(1) electric charge present in the given theory, which can be easily found from the

normalized (such that Tr T (a) T (a) = 1
2
) form of the relevant U(1) generator.

For example, in the case of the symmetry breaking, SO(2N) → U(N), the adjoint

VEV is of the form, φ =
√

4N v T (0), where T (0) is a 2N × 2N block-diagonal matrix

with N nonzero submatrices i√
4N

(
0 1

−1 0

)
. Dividing the mass (A.15) by

√
N v and

identifying the flux with 4πgm one gets gm = 2√
N g

. Finally, in terms of the minimum

electric charge of the theory e0 = g√
4N

( which follows from the normalized form of

T (0) above) one finds

gm =
2√
N g

=
2

N
· 1

2 e0
. (A.17)

The calculation is similar in other cases.

The asymptotic gauge field can be written as

Fij = ǫijkBk = ǫijk
rk

r3
(β · H), β = α∗ (A.18)

in an appropriate gauge (Eq.(A.10)). The Goddard-Nuyts-Olive quantization condi-

tion [4]

2 β · α ∈ Z (A.19)

then reduces to the well-known theorem that for two root vectors α1, α2 of any group,

2 (α1 · α2)

(α1 · α1)
(A.20)

is an integer.

Appendix B Root vectors and weight vectors

B.1 AN = SU(N + 1)

It is sometimes convenient to have the root vectors and weight vectors of the Lie

algebra SU(N + 1) as vectors in an (N + 1)-dimensional space rather than an N -

dimensional one. The root vectors are then simply

(· · · ,±1, · · · ,∓1, · · ·). (B.1)

(· · · stand for zero elements) which all lie on the plane

x1 + x2 + . . . + xN+1 = 0, (B.2)
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while the weight vectors are projections in this plane of the orthogonal vectors

~µ = (· · · ,±1, · · ·) (B.3)

where the dots represent zero elements.

In order to use the general formulas of Weinberg and Goddard-Olive-Nuyts we

normalize these vectors so that the diagonal (Cartan) generators may be written

Hi = diag (wi
1, wi

2 . . . , wi
N , wi

N+1 ), i = 1, 2...N (B.4)

where wk represents the k-th weight vector of the fundamental representation of

SU(N + 1), satisfying

wk ·wl = − 1

2(N + 1)2
; (k 6= l); wk ·wk =

N

2(N + 1)2
, k, l = 1, 2, . . . , N +1;

(B.5)

and
∑N+1

k=1 wk = 0. They are vectors lying in an N -dimensional space (B.2): in the

coordinates of the N + 1-dimensional space,

wi =
1√

2(N + 1)3
(−1, . . . ,−1, N,−1,−1, . . .). (B.6)

The root vectors are simply

α = wi − wj =
1√

2(N + 1)
(· · · ,±1, · · · ,∓1, · · ·) (B.7)

with the norm

α · α =
1

N + 1
. (B.8)

Note that for i 6= j

Tr (Hi Hj) = wi
1w

j
1 + . . . + wi

N+1w
j
N+1 =

−2N + N − 1

2(N + 1)3
= − 1

2(N + 1)2
, (B.9)

while

Tr (Hi Hi) =
N2 + N

2(N + 1)3
=

N

2(N + 1)2
. (B.10)

The adjoint VEV causing the symmetry breaking SU(N + 1) → SU(N) × U(1)

is of the form,

φ = h · H, h = v
√

2(N + 1)3 (0, 0, . . . , 1). (B.11)
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B.2 BN = SO(2N + 1)

The N generators in the Cartan subalgebra of the Lie algebra SO(2N + 1) can be

taken to be

Hi =





−iwi
1J

−iwi
2J

. . .

−iwi
NJ

0




, J =

(
1

−1

)
(B.12)

where wk (k = 1, 2, . . . , N) are the weight vectors of the fundamental representation,

which are vectors in an N -dimensional Euclidean space

wk · wl = 0; k 6= l; wk · wk =
1

2(2N − 1)
: (B.13)

they form a complete set of orthogonal vectors. The root vectors of SO(2N + 1)

group are α = {±wi, ±wi ± wj}; their duals are:

α∗ = ±2(2N − 1)wi, (2N − 1)[±wi ±wj ]. (B.14)

The diagonal generators satisfy

Tr Hi Hj =
1

2N − 1
δij. (B.15)

In the system with symmetry breaking SO(2N +1) → SO(2N−1)×U(1) the adjoint

scalar VEV is

φ = h · H, h = iv
√

2(2N − 1) (0, 0, . . . , 1). (B.16)

B.3 CN = USp(2N)

The N generators in the Cartan subalgebra of USp(2N) are the following 2N × 2N

matrices,

Hi =

(
Bi 0

0 −Bi
t

)
, i = 1, 2, . . . , N, (B.17)

where

Bi =





wi
1

wi
2

0
. . . 0

wi
N−1

wi
N




, i = 1, 2...N. (B.18)
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The weight vectors wk (k = 1, 2, . . . , N) form a complete set of orthogonal vectors in

an N -dimensional Euclidean space and satisfy

wk · wl = 0; k 6= l; wk · wk =
1

4(N + 1)
. (B.19)

The root vectors of USp(2N) group are α = {± 2wi, ±wi ± wj}. The diagonal

generators satisfy

Tr Hi Hj =
1

2(N + 1)
δij . (B.20)

For the breaking USp(2N) → USp(2(N − 1)) × U(1) the adjoint scalar VEV is

φ = h · H, h = v
√

4(N + 1) (0, 0, . . . , 1). (B.21)

B.4 DN = SO(2N)

The N generators in the Cartan subalgebra of the SO(2N) group can be chosen to

be

Hi =





−iwi
1

(
1

−1

)

−iwi
2

(
1

−1

)

. . .

−iwi
N

(
1

−1

)





, (B.22)

where wk (k = 1, 2, . . . , N) are the weight vectors of the fundamental representation,

living in an N -dimensional Euclidean space and satisfying

wk · wl = 0; k 6= l; wk · wk =
1

4(N − 1)
: (B.23)

they form a complete set of orthogonal vectors. The root vectors of SO(2N) are

α = {±wi ±wj}. The diagonal generators satisfy

Tr Hi Hj =
1

2(N − 1)
δij. (B.24)

In the system with symmetry breaking SO(2N) → SO(2N − 2) × U(1) the adjoint

scalar VEV takes the form

φ = h · H, h = iv
√

4(N − 1) (0, 0, . . . , 1). (B.25)
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